Flow Localization Processes in Austenitic Alloys /

Austenitic alloys are widely used for structural component applications in high irradiation environments. In general, they are more resistant to embrittlement than other classes of structural alloys, particularly at ambient and intermediate temperatures. Nevertheless, this class of materials suffers...

Full description

Bibliographic Details
Main Authors: Wu, X. (Author), Li, M. (Author), Pan, X. (Author), Stubbins, JF (Author)
Corporate Authors: ASTM International, American Society for Testing and Materials
Format: Book
Language:English
Published: West Conshohocken, Pa. : ASTM International, 2006
Subjects:
Description
Summary:Austenitic alloys are widely used for structural component applications in high irradiation environments. In general, they are more resistant to embrittlement than other classes of structural alloys, particularly at ambient and intermediate temperatures. Nevertheless, this class of materials suffers from highly localized flow when irradiated to moderate dose (~ 1 to 5 dpa) at temperatures between 150 and 400°C. The loss of ductility is normally exhibited by very low values of uniform elongation in tensile tests. The processes that lead to plastic instability are examined here for several face centered cubic materials and alloys. It is found that there is a critical stress level at which necking initiates. This critical stress level is not influenced by irradiation exposure. However, irradiation exposure, which increases material yield strength, does result in proportional reductions in uniform elongation. Most of the materials examined here exhibit a bilinear strain hardening behavior. This leads to direct correlation between the material yield strength and the uniform elongation
Physical Description:1 online resource (14 pages) : illustrations, figures, tables
Bibliography:Includes bibliographical references
Access:Restricted for use by site license.